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COMPARATIVE EVALUATION OF METHODS FOR PREDICTING FLUTTER
AND DIVERGENCE OF UNSWEPT WINGS OF FINITE SPAN

By E. Carson Yates, Jr., and Samuel R. Bland

SUMMARY

}/76 -
Subsonic and supersonic flutter and divergence calculations have been made
for five unswept wings by several analytical methods. The results have been com-
pared with experimental flutter data in order to evaluate each method of pre-
dicting aeroelastic instabilities, particularly in the high subsonic and low
supersonic to hypersonic ranges.

For the subsonic range, the methods examined included a modified strip anal-
ysis, two-dimensional loading modified to account for finite planform, and the
subsonic kernel function. These methods all appeared to predict flutter speeds
satisfactorily for Mach numbers below about 0.75 but, in the high subsonic range,
the kernel-function method produced best agreement with experiment.

For the supersonic range, the methods examined included the modified strip
analysis, modified two-dimensional loading, rectangular-wing theory, aerodynamic
influence coefficients, and quasi-steady second-order theory. These calculations
indicated that the use of linearized aerodynamic theory may lead to excessively
unconservative estimates of flutter speeds even at relatively low supersonic Mach
numbers. In contrast, aerodynamic theories which account for effects of finite
wing thickness were indicated to be capable of predicting satisfactory flutter
boundaries even into the hypersonic range. A simplified steady-state method,
which represents the zero-frequency limiting case of the modified strip analysis,
gave satisfactory flutter results in the subsonic and low supersonic to hypersonic
ranges for a wing which fluttered at low reduced frequencies.

In the high subsonic range, divergence speeds calculated by modified strip
analysis and by modified two-dimensional loading were indicated to be

conservative. /47J % Y

INTRODUCTION

In the flutter analysis of unswept wings of moderate to high aspect ratios,
a number of methods exist for evaluating the required distributions of subsonic
and supersonic oscillatory aerodynamic loadings (refs. 1 to 31, for example).
These methods involve varying degrees of approximation, and all are subject to
theoretical preclusion at Mach numbers near 1.0. This limitation implies that



minimum flutter speeds, which generally occur in the transonic range, may not be
adequately predicted by such methods. In contrast, for swept wings of moderate
to high aspect ratio, flutter speeds can be predicted through the transonic range
by approximate methods (ref. 4). Some applications of linearized potential-flow
theory have been developed for Mach numbers near 1.0 (e.g., refs. 32 to 35), but
because of approximations and complexity these procedures do not appear to be
widely used in flutter analyses. The analysis of reference 32, for example, is
restricted to low-aspect-ratio wings oscillating at low frequencies. Because of
complications in the calculations, the method of reference 34, although pertinent
to high-aspect-ratio wings, was applied only to rectangular wings oscillating
without spanwise variation of motion or distortion.

The primary purpose of the present investigation is to examine, particularly
in the high subsonic and low supersonic ranges, some results of modal-type flutter
analyses employing various methods for evaluating the required oscillatory aero-
dynamic loading on unswept wings. The calculated flutter characteristics of five
unswept wings are compared with existing experimental flutter data in order to
evaluate each method of predicting flutter speeds in the vicinity of the transonic
minimum values. In addition, for one of the wings, experimental data were avall-
able up to hypersonic Mach numbers. For that wing, the calculations are also
extended into the hypersonic range in order to obtain comparisons over a wide
range of Mach numbers between methods which include or exclude the effects of
finite wing thickness. Since unswept wings may, in general, be subject to diver-
gence as well as to flutter, divergence boundaries for the present wings were
calculated by several of the methods employed in the flutter analyses.

In this investigation the methods employed for representing the oscillatory
aerodynamic loading at Mach numbers less than 1.0 are a modified strip analysis,
a simplified steady-state method, a modified two-dimensional loading (employing
the loading parameters of refs. 9 and 10), and the kernel-function method. For
Mach numbers greater than 1.0, the methods used are the modified strip analysis,
the simplified steady-state method, the modified two-dimensional loading, a
rectangular-wing theory, the finite-summation aerodynamic-influence-coefficient
method, and the quasi-steady second-order theory. Piston theory is not included
because reference 26 showed that at high Mach numbers piston theory and quasi-
steady second-order theory give essentially the same results; whereas, at the
lower supersonic Mach numbers, results of the quasi-steady second-order theory
are the more conservative and are generally closer to experimental values. The
transonic potential-flow methods are also excluded because of the limitations
previously discussed.

SYMBOLS
A aspect ratio of full wing including fuselage intercept
Ap aspect ratio of wing, considering side of fuselage as reflection plane

(twice panel aspect ratio)




8c,n

c
la,n

‘o ,n

nondimensional distance from midchord to local aerodynamic center (for
steady flow) measured perpendicular to elastic axis, positive rear-
ward, fraction of semichord perpendicular to elastic axis

wing semichord measured streamwise

local lift-curve slope for section perpendicular to elastic axis in
steady flow

derivative with respect to angle of attack of local pitching-moment
coefficient measured about leading edge of section perpendicular to
elastic axis in steady flow

ratio of normal force coefficient measured in Freon-12 to normal force
coefficient measured in air

structural damping coefficient
Mach number

oscillatory section pitching moment measured about leading edge of wing
section perpendicular to elastic axis

total mass of wing panel

oscillatory section 1ift for wing section perpendicular to elastic axis
thickness of mounting shaft for wing 2001

flutter or divergence speed

reference flutter speed calculated from modified strip method by using
aerodynamic parameters for two-dimensional incompressible flow

volume swept out by rotating rectangular wing about its midchord line

nondimensional coordinate measured from wing root along elastic axis,
fraction of elastic axis length

taper ratio of full wing including fuselage intercept

taper ratio of exposed wing panel

mass ratio, m/pv
free-stream fluid density
circular frequency of vibration at flutter

circular frequency of ith natural (coupled) vibration mode




Wn, 3 circular frequency of jth uncoupled bending vibration mode

Uy, circular frequency of first uncoupled torsional vibration mode
Subscripts:
2D two dimensional
3D three dimensional
WINGS

Wing Designation

For convenience the wing-designation system employed in references 1, 2,
and 36 is retained in the present report. 1In the three-digit system used for
the tapered wings, the first digit is the aspect ratio of the full wing to the
nearest integer. The second and third digits give the quarter-chord sweep angle
to the nearest degree. The letter R is appended to the planform designation in
order to indicate a wing which has been ballasted to shift its local centers of
gravity rearward. For the untapered wings the same designation system is used,
except that a fourth digit 1 is appended to indicate the taper ratioc.

Wing Description

Some pertinent geometrical and structural parameters for the five wings are
given in table I.

Wings 400 and 400R.- The two tapered wings treated in this report had aspect
ratio 4.0, taper ratio 0.6, and NACA 65A004 airfoil sections. These wings, des-
ignated as wings 400 and 4O0R, were of essentially homogeneous construction and
were ostensibly identical except where ballast weight was distributed along the
trailing edge of wing 40OR in order to alter the local center-of-gravity posi-
tions. (See fig. 1(a).) For flutter testing these wings were cantilever mounted
in the midwing position on a cylindrical sting-fuselage with diameter equal to
21.9 percent of the span. The experimental flutter data and mass and stiffness
properties for wing 400 are given in reference 36 and those for wing 4OOR are
given in reference 1.

Wing 7001l.- Wing 700l is a homogeneous rectangular wing of aspect ratio
7.387. The airfoil of this wing varied linearly from an NACA 65A004 airfoil at
the root to an NACA 65A002 airfoil at the tip. For flutter testing the wing was
cantilever mounted in a midwing position on a fuselage of circular cross section.
(See fig. 1(b).) Experimental flutter data and mass and stiffness properties for
wing 700l are given in reference 37. It should be noted that the experimental
flutter data reproduced from reference 37 were obtained by several testing tech-
niques with models of differing size. The present analyses, however, employed




only the physical properties of the wing models tested in the Langley transonic
blowdown tunnel (data from ref. 37).

Wing 400l.- The rectangular wing panel with panel aspect ratio 1.73, called
wing 5601, corresponds to a full wing of aspect ratio 4.00. This wing had
1.5-percent-thick symmetrical hexagonal airfoil section and was of solid steel
construction. For flutter testing the wing was cantilever mounted from a half
fuselage which was shimmed 0.25 inch from the tunnel floor in order to extend the
model beyond the floor boundary layer. (See fig. 1(c).) Experimental flutter
data and mass and stiffness properties for wing 4001 are given in reference 38.

Wing 2001.- The square wing panel (wing 2001) corresponds to a full rectan-
gular wing with aspect ratio 2.00 and with 9-percent-thick symmetrical diamond
airfoil section. The wings which were flutter tested were built on a core of
stainless-steel sheet with an integral rectangular shaft for mounting. (see
fig. 1(d).) The airfoil contour was formed by balsa wood cemented to the metal
core. The cores were perforated and ballasted in order to maintain essentially
constant inertia properties and frequency ratios for three different levels of
mounting-shaft stiffness. For flutter testing these wings were mounted by
clamping the end of the shaft at the tunnel wall as shown in figure 1(d). The
semicylindrical fairing shown was used for transonic testing but was replaced by
a reflection plane for supersonic testing. The experimental flutter data and
mass and stiffness properties for wing 2001 are given in reference 39.

Vibration Mode Shapes and Frequencies

Mode shapes.- Uncoupled vibration modes were employed in flutter calcula-
tions for all five wings. For wings 400, LOOR, 7001, and 4001, calculated
cantilever-beam modes for the first torsion and first and second bending modes
were used. Unlike the other four wings, wing 2001 was not cantilevered at the
root; hence, the term "uncoupled modes" has a somewhat different connotation for
this wing. For wing 2001, the "uncoupled modes" are taken to be rigid-body modes
for the wing panel in pitch and in flapping; these modes were calculated and given
in reference 39. In addition to these modes, the first two measured natural
(coupled) modes for wing 2001 were also available from reference 39, and they
were used in some flutter calculations.l These coupled modes contain some tor-
sional deformation of the wing panel which, of course, is not included in the
rigid-body uncoupled modes.

Modal frequencies.- With the exception of the rigid-body frequencies which
were calculated for wing 2001, all modal frequencies used herein were obtained
from measured values. Since wings 400, 4OOR, 7001, and 400l are cantilevered,
unswept, and of moderate to high aspect ratio, their natural-mode frequencies
would be expected to differ little from their uncoupled-mode frequencies, at
least in the lower modes. Accordingly, following the procedure used in refer-
ence 40, the measured natural-mode frequencies for these four wings are used

lThe mode shape for the third natural mode is not given in reference 39.
However, its omission from the flutter calculations should have an insignificant
effect on the resulting flutter speeds because the third-mode frequencies were
shown to be at least 2.5 times the second-mode frequencies.



directly as uncoupled-mode frequencies. The corresponding measured torsion-mode
frequencies were "uncoupled" by means of the relation used in reference 40. The
resulting uncoupled torsion-mode frequencies differ from the measured values by
an insignificant amount.

All the modal frequencies used in the flutter calculations are summarized
in table I.

FLUTTER AND DIVERGENCE CALCULATIONS

General Considerations

The types of flutter and divergence calculations performed in this investi-
gation are summarized in table II. In all calculations for wings 400, 4OOR, 7001,
and 4001, a single representative value of flow density was used for each wing as
in references 1 and 2 (see table I herein), because the large number of experi-
mental flutter points for each of these wings were obtained at different densi-
ties. The flutter points measured for wing 2001, however, were relatively few,
and they covered a considerably greater range of Mach number. Therefore, each
calculation for wing 2001 employed the value of flow density associated with the
nearest experimental flutter point. In particular, all subsonic calculations for
wing 2001 included the flow density for the flutter point measured at the lowest
Mach number (M = 0.97). Some effects of varying flow density are discussed in
references 2, 41, and L2.

The transonic flutter data for wing 2001 were measured in Freon-12 rather
than in air (ref. 39). Reference 41 pointed out that flutter-speed boundaries
for Freon-12 are slightly lower than corresponding boundaries for air at the same
density and Mach number because aerodynamic load intensities (e.g., section lift-
curve slopes) are greater in Freon-12 than in air. This difference in loading
has been accounted for in order to make the calculated flutter characteristics
more directly comparable to the experimental data. For all calculations corre-
sponding to flutter data measured in Freon-12, the load intensities have been
obtained by effectively increasing corresponding loads for air by a Mach number
dependent factor which ranged from 1.0 at M = 0 to about 1.1 in the transonic
range. The magnitude of this factor was based on the extensive comparisons of
load-distribution measurements in air and in Freon-12 shown in figure 16 of ref-

erence 43, This type of load modification is discussed in more detail in refer-
ence 4l1.

Finally, very little information was available with regard to values of the
modal structural damping coefficients for the five wings investigated. However,
damping-coefficient values for the lower modes of homogeneous wings such as wings
400, 4OOR, 7001, and 4001 are generally very low. Also, damping for wing 2001
should be very small because the predominant portion of the vibrational deforma-
tion occurred in the solid metal mounting shaft. Consequently, in most of the
present flutter calculations the flutter points were considered to be defined by
conditions requiring zero structural damping to sustain constant-amplitude oscil-
lations. A few calculations, however, included arbitrary but small nonzero values




of structural damping. In all cases the damping values were taken to be the same
for all modes.

Methods of Analysis

As indicated previously, a number of methods exist for evaluating the oscil-
latory aerodynamic loads required in the flutter analysis of unswept wings in
compressible flow. (See refs. 1 to 31, for example.) Several of these methods
which are employed in the present investigation are described briefly in the fol-
lowing section. Some variations applied herein to two of the methods, namely the
simplified steady-state method and the modified two-dimensional loading, are dis-
cussed in somewhat more detail.

Modified strip analysis.- The modified-strip-analysis method of flutter pre-
diction was presented in reference 1, extended in references 3 and 4, and further
applied in references 2, 41, and 42. In this method, spanwise distributions of
steady-flow section lift-curve slope and local aerodynamic center for the unde-
formed wing are used in conjunction with the "effective" angle-of-attack distri-
bution resulting from the assumed vibration modes in order to obtain values of
section 1ift and pitching moment. The steady-state aerodynamic parameters may be
obtained from any suitable theory or experiment, the criterion being that the best
method to use is the one that yields the most accurate steady-state load distri-
butions. Circulation functions modified on the basis of loadings for two-
dimensional airfoils oscillating in compressible flow are employed to account for
the effects of oscillatory motion on the magnitudes and phase angles of the 1lift
and moment vectors.

Since the required distributions of section lift-curve slope and local aero-
dynamic center may be obtained in any desired manner, for the present calcula-
tions they were obtained from subsonic and supersonic linearized three-dimensional
potential-flow theory (lifting-surface theory) as in references 1 and 2, from mod-
ification of the supersonic linear-theory values based on two-dimensional shock-
expansion theory as in reference 3, and from transonic wind-tunnel and supersonic
flight tests as in reference 4. (See table II.) Some of the particular values
used herein for wings 400, LOOR, 7001, and 4001 are given in references 1 and &4,
and in figures 2 and 3 of the present report. Figures 2 and 3 also include for
comparison the corresponding values from subsonic lifting-line theory which were
used in the flutter calculations of references 1l and 2. For wing 4001, use of
shock-expansion theory at M = 1.3 and M = {5 Yielded values of section lift-

curve slope which were less than 2 percent greater than corresponding linear-
theory values; the local aerodynamic centers obtained from shock-expansion theory
were less than 2-percent chord forward of the corresponding positions indicated
by linear theory. The steady-flow aerodynamic parameters required for wing 2001
(fig. 4) were calculated from subsonic and supersonic linearized lifting-surface
theory and for the higher supersonic Mach numbers from linearized theory with a
modification based on shock-expansion theory as in reference 3. The resulting
modified distributions of local aerodynamic center are included in figure k4, but
the altered section lift-curve slopes are very close to the corresponding linear-
theory values and hence are not shown.




Although the modified strip analysis is applicable to swept wings at tran-
sonic speeds (ref. 4), it was indicated in reference 1 to be unsuitable when the
component of Mach number normal to the leading edge is near 1.0 because of the
nature of the circulation functions employed. Thus the method is not usable for
unswept wings in the transonic range. The present calculations, in addition to
those of reference 4, supply some quantitative information on the extent of this
inaccessible range. Applications extending into the hypersonic range are also
shown for wing 2001. It is believed, however, that the aspect ratio of wing 2001
is probably fairly close to the minimum for which any strip method may reasonably
be used at subsonic and low supersonic Mach numbers.

Simplified steady-state method.- The simplified steady-state method was pre-
sented in reference 5 and applied with some variations in references 6 and 7.
This method may be derived from the modified strip analysis by ignoring all
unsteady aspects of the aerodynamic loading and by neglecting all aerodynamic
terms which result from bending motions. The only remaining aerodynamic input to
the wing is a steady-state (pure real) loading which is associated with the
instantaneous pitch angle (or angle of attack) of each wing section. Hence, this
method coincides with the zero-frequency limiting case of the modified strip
analysls and may be employed for any Mach number for which accurate steady-state
load distributions are available.

Such a method would, of course, be expected to yield reasonable flutter
results only when flutter occurs at very low reduced frequencies. This condition
frequently exists in the supersonic to hypersonic range, but reduced frequencies
often reached maximum values in the transonic range. On the other hand, the
transonic limitation for unswept wings, mentioned previously in connection with
the modified strip analysis, does not apply to the simplified steady-state method
because circulation functions are neglected. In the present application to wing
2001, however, Mach numbers very near 1.0 are not included because measured values
of section lift-curve slope and local aerodynamic center were not available, and
because the accuracy of steady-state potential theory is questionable near sonic
speeds.

Modified two-dimensional loading.- Another strip type of approach is to use
aerodynamic coefficients for two-dimensional oscillating wings in a section-by-
section application across the span of a finite wing. In a procedure of this sort,
finite-span effects may be accounted for approximately by weighting the two-
dimensional oscillatory coefficients on the basis of three-dimensional steady-
state loading. References 9 and 10 give tabulated values of loading coefficients
for two-dimensional thin wing sections oscillating without deformation in compres-
sible flow. These coefficients, derived from subsonic, transonic, and supersonic
linearized unsteady potential-flow theory, are applied herein to wings of finite
span by welghting the oscillatory two-dimensional section 1lift and pitching moment
on the basis of section 1lift and pitching-moment coefficients calculated from lin-
earized three-dimensional steady-flow theory. Thus, for each wing section

c
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(Mcx«, le)jD,unsteady = (Ma,le)2D,unsteady (c , )3D,Steady
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where P2D,unsteady and (Md"le)E'D,u.ns teady are, respectively, the section 1ift

and pitching moment given by the two-dimensional linearized potential-flow theo-

ries of references 9 and 10; in all cases (c @ n)
)

and
2D,steady (cm“’n) 2D,steady
are, respectively, the well-known section lift-curve slope and section pitching-
moment-curve slope given by two-dimensional steady-flow theory which corresponds
to the zero-frequency limit for the theories of references 9 and 10, that is,

2n

c = M<1
( 7'“:11) 2D, steady > ( )
l1-M
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and
n
c = — M<1)
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Flutter calculations for all five wings were made with spanwise distributions
of obtained from subsonic (ref. 44) and

c and (c

( 7'C":n)}D,steady ( mu,,n) 3D,steady
supersonic (ref. 45) linearized potential-flow theory. (See table II.) In addi-
tion, some supersonic flutter calculations for wing 2001 employed values of

c and c which were modified by shock-expansion
C1a,n) 3D, steady ( m“:n)sn,steady

theory as in reference 3 in order to take approximately into account the effect
of finite wing thickness. Finally, for comparison, the two-dimensional linear-
theory loadings of references 9 and 10 were employed without alteration in some
calculations for wings 400 and 7001. (See table II.)

These procedures are, of course, strip methods and hence are subject to
the usual planform limitations that apply to such methods, as discussed in



reference 1, for example. The present methods, however, are not restricted to
unswept wings but could be extended to swept wings by applying the previously
described expressions to wing sections normal to the elastic axis as in the modi-
fied strip analysis (ref. 1). Use of a steady-state type of modification such as
the one employed here is questionable if the flutter reduced frequency baMV is
high. On the other hand, at Mach numbers near 1.0 the aerodynamic coefficients
obtained from two-dimensional linearized potential-flow theory are of question-
able validity for low reduced frequencies. The present procedure may therefore
prove to be of limited value in the transonic range, even if measured steady-flow
parameters were used in the modification.

Subsonic kernel function.- The subsonic kernel-function flutter calculations
were based on the method described in reference 12 (see also ref. 11) which was
derived from three-dimensional linearized unsteady potential-flow theory. 1In
order to calculate the pressure distribution on an oscillating wing from the
integral equation which relates pressure and downwash, the method of reference 12
employs a collocation procedure. In this procedure the lifting pressure is con-
sidered to be composed of a linear combination of a number n of assumed pres-
sure modes. The forms of the pressure modes are chosen so that the boundary con-
ditions at the leading edge, trailing edge, and tip are satisfied. The n
arbitrary coefficients in the linear combination of pressure modes are evaluated
by requiring the pressure-induced downwash to equal that resulting from the wing
deflection at n discrete collocation points on the wing surface.

In all calculations the wing root was considered to be a reflection plane,
and the nine downwash collocation points used were located chordwise at 25, 50,
and 75 percent of the local chord. Wings 400 and 4OOR were cantilevered at the
root, so the collocation points were taken at 30, 60, and 90 percent of the panel
span in order to evaluate the aerodynamic loading most accurately over the out-
board portions of these wings where the greatest deflections occurred. However,
some unpublished calculations for wing 400 have indicated that the calculated
flutter characteristics are not very sensitive to small changes in the spanwise
positions of the collocation points. Wing 2001 was not cantilevered at the root,
and significant deflection of the root occurred in both of its measured natural
vibration modes as well as in its rigid-body pitching and flapping modes. Hence,
in order to obtain a reasonably accurate evaluation of the aerodynamic loading
over the entire wing panel, the collocation points for wing 2001 were taken at
20, 50, and 80 percent of the panel span.

Rectangular-wing theory.- The rectangular-wing theory of reference 13 (see
also refs. 14 to 18) is based on a development of the velocity potential for
supersonic flow near the corner of a quarter-infinite thin wing undergoing har-
monic motion of small amplitude with arbitrary deflection shape. The solution to
this linearized boundary-value problem is obtained by means of integral transform
techniques and is expressed in terms of integrals over a portion of the wing area.
This method has been applied (ref. 17) to the calculation of oscillatory section
1lift and pitching-moment coefficients for wings with deflection shapes that are
linear in the chordwise coordinate and monomial (single-power term) in the span-
wise coordinate. The equations of reference 17 have been employed herein in flut-
ter calculations for wings TOOl, 4001, and 2001. The cantilever-beam (uncoupled)
modes for wings TOOl and 4001 as well as the rigid-body modes and natural modes
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for wing 2001 are linear in the chordwise variable so that the chordwise-
deflection-shape restriction of reference 17 imposes no additional approximation.
However, spanwise variations of the mode shapes for these wings were approximated
by polynomials, and the expressions of reference 17 were applied for each mono-
mial term. For wings 7001 and 4001, the first torsion mode and the first and sec-
ond bending modes were approximated, in the least-squares sense, by polynomials
of third, fourth, and fifth degrees, respectively. For wing 2001 both the rigid-
body modes and the natural modes, given in reference 39, are linear in the span-
wise variable.

In addition to the usual limitations of linearized aerodynamic theory, the
rectangular-wing theory is also limited to Mach numbers for which no Mach line
from the wing tip intersects the root chord. Hence, it is not generally applica-
ble for Mach numbers near 1.0.

Aerodynamic influence coefficients.~ The aerodynamic-influence-coefficient
method of references 19 to 21 is based on the linearized velocity potential for
an oscillating wing in supersonic flow. The oscillatory lifting pressure on the
wing is expressed as a surface integral of the product of the oscillatory down-
wash and the influence function. The downwash, in turn, is evaluated from the
frequency and the vibration mode shape, and the influence function is derived
from the properties of simple flow singularities. In general, the lifting-
pressure integral cannot be evaluated in closed form, so that a finite-summation
approximation is employed for its computation. For this purpose the wing surface
is divided into small but finite areas or "boxes," and the influence function is
approximated in each box by its value at the box center. For the present cal-
culations the boxes were taken to be rectangles with diagonals parallel to the
Mach lines. The advantages and disadvantages of several different shapes of
boxes are discussed in references 19 to 23. Regardless of the shape of the boxes,
however, their size must be decreased and their number increased until conver-
gence of the flutter solution is indicated. If convergence is achieved and if
the reduced frequency is small, the influence-coefficient method should yield
essentially the same flutter results for rectangular wings as the previously
mentioned rectangular-wing theory. The aerodynamic-influence-coefficient method
was therefore used in flutter calculations for only one wing (wing 4001). (See
table II.)

Quasi-steady second-order theory.- The quasi-steady second-order theory
employed herein and in references 25, 26, and 42 is based on the supersonic
steady-flow second-order theory of reference 24. The lifting-pressure expres-
sion of reference 24 (see also ref. 25) is used to represent the pressure distri-
bution on an oscillating wing as if it were composed of a succession of steady-
state distributions each associated with an instantaneous angle of attack. This
procedure is reasonable for high Mach numbers because the flutter reduced fre-
quency generally decreases as Mach number increases. Thus, at high Mach numbers
the unsteady aspects of the flow have reduced significance.

The lifting-pressure expression for quasi-steady second-order theory
(ref. 25) differs from that for second-order piston theory only with regard to
two coefficients that are functions of Mach number and the ratio of specific
heats. Furthermore, as Mach number approaches infinity, the lifting-pressure

11




expressions for the two theories approach each other. Both theories permit the
inclusion of airfoil shape, and this was accounted for in the present calcula-
tions. As indicated in references 25 and 26, the flutter results of these two
theories are generally similar, with the quasi-steady second-order theory usually
yielding the better agreement with experiment at the lower supersonic Mach num-
bers. Therefore, piston theory has not been included in the flutter comparisons
of the present report.

Neither quasi-steady second-order theory nor piston theory take formally
into account the aerodynamic effects of streamwise wing tips. However, in all
of the flutter calculations for wing 2001 an approximate tip correction was made
(as in refs. 26 and 42) on the basis of steady-flow linear theory. This tip cor-
rection consists of multiplying the second-order-theory loading at each point on
the wing by the ratio of steady-state load (ref. 45) for the wing with streamwise
tip to steady-state load for the wing without streamwise tip. The correction
alters the aerodynamic loading only within the triangular region influenced by
the tip, and it is, of course, a reasonable approximation only for low reduced
frequencies.

PRESENTATION OF RESULTS

Results of the flutter and divergence calculations for the five unswept
wings (table II) are compared with experimental flutter data in figures 5 to 10.
To facilitate comparisons with previously published results, flutter and diver-
gence speeds for all the wings are presented in the form of a speed ratio Y/VR.
In this ratio the normalizing reference speed Vg for each theoretical or experi-

mental point is the flutter speed calculated by the modified-strip method, with

the density associated with the numerator V and with aerodynamic parameters for

two-dimensional incompressible flow ¢y =2t and ac,np = - % .
a,

all values of VR were calculated with rigid-body vibration modes. In addition

to the flutter-speed and divergence-speed ratios, the results for wing 2001 are

For wing 2001,

also presented in the form of a flutter-speed and divergence-speed index v
byl

(figs. 9(b) and 10(b)) in order to show that the two types of graph differ only
slightly for an unswept wing which flutters at low reduced frequencies. In con-
trast, reference 42 showed that these types of graph may differ noticeably for a
swept wing which flutters at relatively higher reduced frequencies.

A1l flutter frequencies are normalized with respect to the uncoupled-torsion-
mode frequency . The calculated flutter frequencies given in figures 5 to 8
do not show the transonic discontinuities usually exhibited by the calculated
flutter speeds. Therefore, where both subsonic and supersonic flutter frequencies

have been calculated by the same method, the resulting frequency curves have been
faired through the transonic range.

12




Unless otherwise indicated, all calculated flutter points are defined by
conditions for zero structural damping (g = 0).

DISCUSSION OF FLUITER RESULTS

Subsonic Speed Range

Modified strip analysis.- For wings 400, 4OOR, 7001, and 4001 (figs. 5 to 8),
subsonic flutter speeds calculated by the modified strip analysis are in good
agreement with the few available experimental data points for Mach numbers up to
0.85. For wings 7001 and 4001, however, the calculated flutter-speed curves turn
upward at Mach numbers around 0.80 and thus begin to deviate from the experimental
trend. Reference 4 indicated that because of the behavior of the circulation
functions employed, flutter speeds calculated for unswept wings increase without
limit as M approaches 1.0. Although reference 4 showed that this asymptotic
increase of calculated flutter speed was eliminated by use of measured steady-flow
aerodynamic parameters, the resulting flutter speeds were still not in satisfac-
tory agreement with experimental values. It is therefore unlikely that use of
measured aerodynamic parameters as in reference 4 would result in any significant
or consistent extension of the 0 <M £ 0.85 range of usefulness for applying
the modified strip analysis to unswept wings. In contrast, reference 4 illus-
trated satisfactory application of the method to swept wings through the transonic
range.

For wing 2001, subsonic experimental data are not available for comparison
with results of the modified strip analysis, but the calculated subsonic flutter
speeds are somevwhat higher than the measured values at Mach numbers near 1.0
(fig. 9(a)). However, these calculations employed rigid-body vibration modes.
Use of the natural vibration modes, which contain some torsional deformations not
represented by the rigid-body modes, would be expected to yield some reduction of
calculated flutter speed as it did in the case of calculations by the simplified
steady-state method and by the kernel-function method (fig. 10(a)).

The subsonic flutter frequencies obtained from the modified strip analysis
(figs. 5 to 9) show little variation with Mach number and compare satisfactorily
with experimental values.

Simplified steady-state method.- The simplified steady-state method was
employed only for wing 2001 (figs. 9 and 10). Subsonic flutter speeds calculated
by this method with rigid-body modes and with aerodynamic parameters obtained
from linearized theory decrease monotonically with increasing Mach number and are
in good agreement with transonic experimental values (fig. 9). At M = 0, the
simplified steady-state method and the modified-strip-analysis method yield essen-
tially coincident flutter speeds. At higher Mach numbers the simplified steady-
state method predicts the lower flutter speeds primarily because the "circulation
function" associated with that method is 1 + i0 for all reduced frequencies and
Mach numbers. Therefore, as M approaches 1.0, flutter speeds calculated by the
simplified steady-state method do not rise asymptotically as do those given by
the modified strip analysis.
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Subsonic flutter speeds calculated by the simplified steady-state method
with natural vibration modes are about 18 percent lower than those obtained with
rigid-body modes and, in comparison with experiment at Mach numbers near 1.0,
appear to be about 10 to 15 percent conservative (fig. 10). It should be remem-
bered, however, that accuracy of flutter prediction with this method requires the
flutter reduced frequency to be low. This condition is satisfied for wing 2001
which is an all-moving surface, but, for cantilevered surfaces, reduced-frequency
values might not, in general, be small enough to yield acceptably accurate flut-
ter speeds, particularly in the subsonic and low supersonic ranges.

Modified two-dimensional loading.- For all five wings flutter speeds cal-
culated by use of modified two-dimensional loading are close to values given by
the modified strip analysis at the lower subsonic Mach numbers (M < 0.75). For
wing 400, however, the flutter speeds obtained with modified two-dimensional
loading increase monotonically with increasing Mach number, contrary to the usual
experimental trend and contrary to the trend indicated by the modified strip anal-
ysis and by the subsonic kernel-function method (fig. 5). Moreover, strip-theory-
type flutter calculations employing two-dimensional loading coefficients without
modification for finite span (fig. 5) indicated that the extensive upturn of the
flutter-speed curve at the higher subsonic Mach numbers is not caused by the
finite-span modification. At the higher subsonic Mach numbers, flutter speeds
obtained by use of modified two-dimensional loading become appreciably higher
than experimental values. The calculations of reference 46, which employed
unmodi fied two-dimensional loading, showed a similar upturn of calculated flut-
ter speed as Mach number approached 1.0. In contrast, corresponding flutter
speeds calculated for wing 4OO0R (fig. 6) decreased as Mach number increased to
0.95 and were in good agreement with experimental flutter-speed levels up to
M = 0.99. Subsequent calculations showed that this difference in calculated
flutter speed between wings 400 and 4OOR was caused primarily by their different
section center-of-gravify locations. Differences in section mass and moment of
inertia in pitch had little effect, and the differences in modal frequency ratios
and flow density for these two wings had negligible effect on the shape of the
calculated flutter-speed curves.

For wings 7001 and 4001, flutter speeds calculated by use of modified two-
dimensional loading are in good agreement with experimental values up to Mach
numbers above 0.90 (figs. 7 and 8). For wing 2001, however, the calculated values
become excessively conservative at the higher subsonic Mach numbers (fig. 9).

Flutter frequencies calculated with modified two-dimensional loading compare
satisfactorily with the available measured values for all five wings.

Subsonic kernel function.- Both flutter speeds and frequencies calculated
by the subsonic kernel-function method for wings 400 and 4OOR (figs. 5 and 6)
are in good agreement with experimental values for Mach numbers up to at least
0.95. However, some similar calculations (unpublished) for swept wings have
indicated that under some conditions the agreement may be less satisfactory,
particularly at Mach numbers near 1.0. In fact, for Mach numbers approaching 1.0,
especially when reduced frequencies are small, any linearized aerodynamic theory
should probably be used with caution because the nonlinear effects of viscosity,

mixed flow regions, and shock waves may significantly influence aerodynamic
loadings.
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For wing 2001, flutter speeds obtained from the kernel-function method at
the higher subsonic Mach numbers essentlally coincide with values given by the
simplified steady-state method (figs. 9 and 10). When rigid-body vibration modes
are used in the calculations, the results of both methods are in very good agree-
ment with measured flutter speeds at Mach numbers up to 0.99. However, when meas-
ured natural modes are used, the calculated flutter speeds are slightly
conservative.

Supersonic Speed Range

Modified strip analysis.- Supersonic flutter speeds calculated for all five
wings by the modified strip analysis with aerodynamic parameters obtained from
linearized theory are unconservative by amounts varying from a few percent for
wing YOOR (fig. 6) to about 140 percent for wing 400 (fig. 5). Reference 2
showed that, for wings 400, LOOR, 7001, and 4001, these unconservative results
were associated with two conditions: (1) Flutter speeds given by the modified
strip analysis become very sensitive to small changes in local aerodynamic center,
which appears explicitly in the flutter equations, when the local aerodynamic cen-
ters lie close to the local centers of gravity and (2) Linearized aerodynamic
theory characteristically predicts aerodynamic centers that are too far aft. For
example, reference 2 showed that a forward shift of only l-percent chord in the
local aerodynamic-center locations for wing 700l reduced the calculated super-
sonic flutter speeds to levels that agreed well with the experimental data. Fur-
thermore, reference 4 and figures 5 and 6 show that the use of measured aerody-
namic parameters greatly improved calculated results for wing 400 and produced
excellent agreement with experimental flutter speeds and frequencies for wing

LOOR.

For wing 4001, use of aerodynamic parameters given by shock-expansion theory
reduced calculated flutter speeds considerably below values obtained with line-
arized aerodynamic theory (fig. 8), but the reduction does not appear to be suf-
ficient to yield close agreement with experiment. Use of shock-expansion theory
for wing 2001 (fig. 9) reduces flutter speeds calculated with rigid-body modes
to about two-thirds of the values obtained with linear-theory aerodynamic param-
eters and results in accurate representation of experimental trends, although
calculated flutter-speed levels remain somewhat high. Although measured
structural-damping values were not available for wing 2001, the modified-strip-
analysis calculations which included finite wing thickness (aerodynamic param-
eters obtained from shock-expansion theory) for this wing indicated that inclu-
sion of a small amount of structural damping would decrease slightly the
calculated supersonic flutter speeds shown in figure 9. For example, at
M = 6.86, an increase in g from O to 0.0l would decrease the calculated flut-
ter speed by about 4.5 percent. Reference 47 has shown that under some condi-
tions structural damping may have an adverse effect on flutter speeds calculated
by piston theory for hypersonic Mach numbers. Shock-expansion theory, however,
is not applicable for Mach numbers near 1.0 and may be applied only approximately
for wings with round leading edges. It appears, therefore, that for unswept
wings in the low supersonic range, the attainment of generally accurate flutter
results from the modified strip analysis will require the use of measured
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steady-state aerodynamic parameters, particularly when the local aerodynamic
centers lie close to local centers of gravity.

Simplified steady-state method.- Supersonic flutter speeds calculated for
wing 2001 by the simplified steady-state method with rigid-body modes are essen-
tially coincident with corresponding results of the modified strip analysis
(fig. 9) because flutter reduced frequencies for this wing were very low (less
than 0.06). Since flutter results from the simplified steady-state method and
from the modified strip analysis approach each other as the flutter reduced fre-
quency approaches zero, all the supersonic results obtained for wing 2001 by this
simplified steady-state method are considered to be indicative of the approximate
flutter-speed and flutter-frequency levels that would be predicted by corre-
sponding modified-strip-analysis calculations.

Both flutter speeds and frequencies calculated for this wing by the simpli-
fied steady-state method with natural vibration modes and with aerodynamic param-
eters obtained from shock-expansion theory (fig. 10) are in generally satisfactory
agreement with experiment over the Mach number range covered (1.30 < M < 6.86).

Similar calculations employing linear-theory aerodynamic parameters yield flutter
speeds that agree well with experiment at Mach numbers near 1.1 but rapidly devi-
ate unconservatively from experimental values as Mach number increases.

Modified two-dimensional loading.- Supersonic flutter speeds calculated for
wings 400, HOOR, and 4001 (figs. 5, 6, and 8) by use of modified two-dimensional
loading are generally in good agreement with experiment. For wing 40O, however,
the calculations predict a hump in the flutter-speed curves near M = 1.1 which
is not confirmed by experiment. A similar transonic hump was indicated by the
calculations of reference 46 which employed two-dimensional loading without mod-
ification for finite span. The hump for wing 400 (fig. 5) and a similar one for
wing %001 (fig. 8), however, are less prominent when a small amount of structural
damping is included in the calculations. Except at the lowest supersonic Mach
number (M = 1.05), the inclusion of structural damping increased the calculated
flutter speeds as it did in the calculations of reference 48, The latter cal-
culations, however, employed the theory of reference 49 which was expressed only
for rigid-body motion.

Calculations for wing 400 based on two-dimensional loading coefficients
without modification for finite span (fig. 5) show that the finite-span modifica-
tion can be either stabilizing or destabilizing depending, for example, on Mach
number.

Flutter speeds for wing TOOl calculated with modified two-dimensional loading
(fig. 7) are excessively conservative and are not significantly improved by the
inclusion of structural damping. This result is surprising because, of the pres-
ent five wings, wing TOOl would be expected to experience aerodynamic loadings
most closely representable by coefficients for two-dimensional flow. Indeed,
figure T(a) shows that the effect of the finite-span modification is relatively
small for this wing, particularly in the supersonic range. It is noted, however,
that the flutter calculations which employ modified two-dimensional loading also
produced a second flutter boundary which is as unconservative as the previously
mentioned lower boundary is conservative. For wing 7001, calculations with
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unmodified two-dimensional loading produced flutter speeds which decrease as Mach
number increases in the low supersonic range. Although this trend is contrary

to experiment, it agrees qualitatively with the results of similar calculations
for the nearly identical wing of reference 50.

Flutter speeds calculated by use of modified two-dimensional loading for
wing 2001 with rigid-body vibration modes (fig. 9) behave in a manner similar to
that shown by modified-strip-analysis results. That is, flutter speeds calculated
from the linearized theory rise sharply and unconservatively as Mach number
increases. When the linear-theory loadings are modified on the basis of shock-
expansion theory, the resulting calculated flutter speeds show much better agree-
ment with the experimental trend although the flutter-speed curve remains at a
somewhat unconservative level. The latter type of calculation was not repeated
with the natural vibrations modes. Such a calculation, however, would be expected
to predict more accurate flutter speeds on the basis of corresponding calculations
by the simplified steady-state method (fig. 10).

For all five wings, supersonic flutter frequencies calculated with modified
two-dimensional loading are excessively high. (See figs. 5 to 9.)

Rectangular-wing theory.- Flutter speeds for wing 7001l calculated from
rectangular-wing theory (fig. 7) are slightly conservative and appear to represent
accurately the experimental trend. Similar calculations for wing 4001 yield some-
what unconservative results (fig. 8). These curves as well as the corresponding
curves calculated by modified strip analysis with linear-theory aerodynamic param-
eters rise quite steeply with increasing Mach number. Thus, even though the
curves calculated by these two methods are generally separated by a difference in
Mach number of only about 0.1, the flutter speeds predicted for a given wing at
a particular Mach number differ appreciably. It may be noted for wing 4001 that
in the range 1.3 S M < 1.4, flutter speeds obtained from rectangular-wing theory

are comparable to values given by the modified strip analysis with aerodynamic
parameters based on shock-expansion theory (fig. 8). Moreover, flutter frequen-
cies for these two wings obtained by use of rectangular-wing theory compare favor-
ably with experimental values and with values given by the modified strip analysis
(figs. 7(v) and 8(b)).

For wing 2001, supersonic flutter speeds calculated from rectangular-wing
theory (fig. 9) rise rapidly and unconservatively as Mach number increases. At
all Mach numbers covered, these calculated flutter speeds lie between values
given by modified two-dimensional loading and by modified strip analysis with
linear-theory aerodynamic parameters. Except for Mach numbers close to 1.0, it
appears that none of the flutter analyses which are based on linearized aerody-
namic theory correctly predict either flutter-speed levels or trends for
wing 2001.

Aerodynamic influence coefficients.- As expected, flutter speeds calculated
for wing 4001 by the aerodynamic-influence-coefficient method (fig. 8) are nearly
the same as corresponding values given by the rectangular-wing theory. However,
in comparison with results from the modified strip analysis and from the
rectangular-wing theory, flutter frequencies given by the aerodynamic-influence-
coefficient method (fig. 8(b)) are higher and farther from the experimental values.
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Quasi-steady second-order theory.- Over the Mach number range covered, flut-
ter speeds calculated for wing 2001 from quasi-steady second-order theory with
either rigid-body vibration modes or natural modes are only slightly below corre-
sponding values given by the simplified steady-state method (figs. 9 and 10).
However, when natural modes (rather than rigid-body modes) are used, the flutter-
speed and flutter-frequency results of both methods are lower and in much better
agreement with experimental values (fig. 10).

DISCUSSION OF DIVERGENCE RESULTS

Subsonic Speed Range

Modified strip analysis and modified two-dimensional loading.- As indicated
previously, when the reduced frequency is zero, the equations of the modified
strip analysis are identical to those of the simplified steady-state method.
Furthermore, the expressions for divergence obtained from the modified strip
analysis and from modified two-dimensional loading are identical so that all
three methods predict the same divergence speeds. Figures 5 to 9 show that as
Mach number increases, the subsonic divergence speeds obtained by use of linear-
theory aerodynamic parameters in these methods characteristically decrease at a
more rapid rate than dc the corresponding calculated flutter speeds. Although
only flutter was encountered experimentally, the calculated subsonic divergence-
speed curves for wings 400, 400R, T00l, and 4001 drop below the experimental flut-
ter points and below the calculated flutter boundaries at Mach numbers near 1.0.
Thus these predicted divergence speeds are obviously conservative, at least at
the higher subsonic Mach numbers.

Subsonic kernel function.- The subsonic kernel-function method was employed
in divergence calculations only for wing 2001 (fig. 9). Throughout the subsonic
range the resulting divergence speeds agree closely with those given by the mod-
ified strip analysis and by modified two-dimensional loading, although experi-
mental confirmation of the calculated values is not available.

Supersonic Speed Range

Modified strip analysis and modified two-dimensional loading.- All the
supersonic divergence speeds calculated from the modified strip analysis and
from modified two-dimensional loading lie well above all calculated flutter
boundaries. (See figs. 5, 6, and 8.) These divergence curves rise very steeply-
with increasing Mach number, and all become infinite at relatively low supersonic
Mach numbers. 1In fact, supersonic divergence calculations for wing 7001 did not
indicate any finite divergence speeds in the Mach number range covered. Calcula-

tions for wing 2001 (figs. 9 and 10) did not yield finite divergence speeds for
Mach numbers above 1.30.

Rectangular-wing theory.- The divergence speed for wing LOOl at M = 2/]3

has been calculated from rectangular-wing theory. The resulting divergence speed
(fig. 8(a)) is only about 6 percent above the corresponding calculated flutter
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speed and is also close to the flutter speed predicted by the aerodynamic-
influence-coefficient method.

SUMMARY OF RESULTS

Subsonic and supersonic flutter and divergence calculations have been made
for five unswept wings by several analytical methods. The results have been com-
pared with experimental flutter data in order to assess the usefulness of each
method for predicting aeroelastic instabilities, particularly near sonic speed
and in the hypersonic range.

For Mach numbers below about 0.75, little difference appeared between flut-
ter speeds predicted by modified strip analysis, by two-dimensional loading modi-
fied to account for the finite planform, and by subsonic kernel function. All
calculated flutter boundaries appeared to be at reascnable levels. A simplified
steady-state method, which represents the zero-frequency limiting case of the
modified strip analysis, gave similar results for a wing which fluttered at low
reduced frequencies.

This investigation, together with previously published related information,
indicates that the modified strip analysis, which has previously been shown to
yield accurate transonic flutter results for swept wings, may be expected to
yield generally accurate subsonic flutter results for unswept wings only up to
a Mach number of about 0.85 because of limitations inherent in the method. At
these higher subsonic Mach numbers, results obtained with modified two-dimensional
loading were not consistently satisfactory. The subsonic-kernel-function method
yielded accurate flutter results up to Mach numbers above 0.G0. For the wing
which fluttered at low reduced frequencies, the simplified steady-state method
gave flutter speeds which were very close to those from the subsonic kernel
function.

Results of the modified strip analysis become sensitive to small changes in
local-aerodynamic-center position when the aerodynamic centers lie close to local
centers of gravity. Under these conditions, which frequently occur for unswept
wings even at relatively low supersonic Mach numbers, linearized aerodynamic
theory is not adequate, and satisfactory flutter prediction by the modified strip
analysis requires that the aerodynamic centers be located by the more accurate
nonlinear theories, which account for effects of finite wing thickness, or by
steady-flow experiments. Modified two-dimensional loading yielded accurate flut-
ter boundaries for some wings in the low supersonic range, but, as in the sub-
sonic range, the results were not consistently satisfactory. Rectangular-wing
theory, which is based on linearized aerodynamic theory, gave reasonable flutter
results at low supersonic Mach numbers, and, as expected, these flutter boundaries
were closely approximated by the aerodynamic-influence-coefficient method. For
the wing which fluttered at low reduced frequencies, all calculations employing
linearized aerodynamic theory yielded flutter speeds that quickly became exces-
sively unconservative as Mach number increased. These calculations included the
modified strip analysis, the simplified steady-state method, modified two-
dimensional loading, and rectangular-wing theory. On the other hand, when
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shock-expansion theory was employed in the modified strip analysis, in the sim-
plified steady-state method, and in modified two-dimensional loading, all three
methods were indicated to be capable of predicting satisfactory flutter bounda-
ries for this wing even into the hypersonic range. Satisfactory results were
also obtained with quasi-steady second-order theory.

Subsonic divergence speeds calculated from the modified strip analysis were
coincident with those obtained with modified two-dimensional loading and were
very close to those given by the subsonic kernel function. Although no experi-
mental divergence data were available for comparison, the calculated divergence
boundaries were indicated to be conservative in the high subsonic range because
they were below experimeptal flutter points.

Calculated supersonic divergence boundaries were generally well above cor-

responding flutter boundaries and rose very steeply as Mach number increased.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hempton, Va., October 4, 1963.
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Figure 1.- Wings employed in flutter analyses. All dimensions are in inches.
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Figure 4.- Continued.
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Figure 4.- Continued.
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(a) Flutter-speed and divergence-speed ratios.

Figure 5.- Flutter and divergence characteristics of wing 400.

For all calculated

points p = 0.002378 slug/cu ft, wy = 2,463 radians/sec, and Vg = 976.5 ft/sec.
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